Sample Test 4

1. True or False: Clearly indicate your choice.

(a) T F \[\int_0^2 \int_1^5 f(x, y) \, dx \, dy = \int_1^5 \int_0^2 f(x, y) \, dx \, dy. \]

(b) T F Let \(a \) = the area of the region \(R \) in the \(xy \)-plane. If \(f(x, y) = k \) for all \(x \) and \(y \) in \(R \), then \(\int \int_R f(x, y) \, dA = ka. \)

(c) T F The volume of the sphere \(x^2 + y^2 + z^2 = 1 \) is given by
\[
V = 8 \int_0^1 \int_0^1 \sqrt{1 - x^2 - y^2} \, dx \, dy
\]

(d) T F \[\int_0^2 \int_0^{2\pi} \int_0^{3\sin \phi} \rho^2 \sin \phi \, d\rho \, d\phi \, d\phi \]

2. \[\int_0^1 \int_1^3 \int \, dx \, dy = \]
 (a) 2 (b) 5 (c) 4 (d) \(\frac{1}{2} \) (e) 10 (f) Does not Exist

3. \[\int_0^1 \int_0^x \sqrt{1 - x^2} \, dy \, dx = \]
 (a) \(\frac{1}{2} \) (b) \(\frac{1}{3} \) (c) \(\frac{1}{4} \) (d) 1 (e) 2 (f) 2x

4. The following integral defines the volume of the region inside the sphere \(x^2 + y^2 + z^2 = a^2 \) above the \(xy \)-plane over the region \(x^2 + y^2 \leq 1 \)
\[
\int_{-1}^1 \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \sqrt{a^2 - x^2 - y^2} \, dy \, dx.
\]

When this is converted to polar coordinates, the resulting double integral has the form

(a) \[\int_0^{2\pi} \int_0^1 r^2 \, d\theta \]
 (b) \[\int_0^{2\pi} \int_0^1 r \sqrt{a^2 - r^2} \, d\theta \, dr \]
 (c) \[\int_0^{2\pi} \int_0^1 r \, dr \, d\theta \]
 (d) \[\int_0^{2\pi} \int_0^1 \sqrt{a^2 - r^2} \, dr \, d\theta \]
 (e) \[\int_0^{2\pi} \int_0^1 r \sqrt{a^2 - r^2} \, dr \, d\theta \]
5. The iterated integral \(\int_{0}^{2} \int_{0}^{x^2} f(x, y) \, dy \, dx \) is equivalent to

(a) \(\int_{0}^{4} \int_{0}^{\sqrt{y}} f(x, y) \, dx \, dy \)
(b) \(\int_{0}^{4} \int_{0}^{2} f(x, y) \, dx \, dy \)
(c) \(\int_{0}^{2} \int_{0}^{\sqrt{y}} f(x, y) \, dx \, dy \)

(d) \(\int_{0}^{4} \int_{0}^{\sqrt{y}} f(x, y) \, dx \, dy \)
(e) \(\int_{0}^{2} \int_{0}^{\sqrt{y}} f(x, y) \, dx \, dy \)

6. Evaluate the following iterated integral. Exact answers only. No numerical approximations.

\(\int_{0}^{6} \int_{0}^{x} e^{y^2} \, dy \, dx \)

7. Express the following as a single iterated integral. Do not evaluate it. \(10 \text{ pts}\)

\(\int_{0}^{2} \int_{0}^{x} dy \, dx + \int_{2}^{4} \int_{0}^{4-x} dy \, dx \)

8. Set up (but do not evaluate) a double integral that gives the area of the surface on the graph of \(f(x, y) = xe^y \) over the region \(R \) consisting of all \(x \) and \(y \) such that \(0 \leq x \leq 4 \) and \(0 \leq y \leq 10 \).

9. Set up but do not evaluate a triple integral for the mass of the solid region \(Q \) bounded by the graphs of the equations below. Assume that density is proportional to the distance from the origin.

\(Q:\quad z = 2 - y, \quad z = 0, \quad y = 0, \quad x = 3, \quad x = 0 \)

10. Suppose \(Q \) is the region in space above the \(xy \)-plane inside the sphere \(x^2 + y^2 + z^2 = 16 \). Consider the integral

\[\int \int \int_{Q} (x^2 + y^2) \, dV \]

which computes the moment of inertia of \(Q \) around the \(z \)-axis. \(12 \text{ pts}\)

(a) Set up (but do not evaluate) an iterated triple integral in \textbf{cylindrical coordinates} that could be used to evaluate this integral.

11. Find the volume of the region below \(z = x^2 + y^2 \) and above the region \(x^2 + y^2 \leq 1 \).

12. Use a double integral in polar coordinates to find the volume of the solid in the \textbf{first octant} \((x \geq 0, y \geq 0, z \geq 0) \) bounded above by \(z = e^{x^2+y^2} \) and below by \(x^2 + y^2 \leq 1 \). Show your work. Exact answers only. NO NUMERICAL APPROXIMATIONS. \(4 \text{ pts}\)