MATLAB Commands for Vectors and Matrices

MTBBD 423

- **Vectors**
 - \(v = [2 \ 4 \ 6] \) yields a row vector.
 - \(v = [2;4;6] \) or \(v = [2 \ 4 \ 6]' \) yields a column vector.
 - \(v(2) \) yields the second element in \(v \).
 - \(v(2:3) \) yields elements 2 through 3 of \(v \).
 - \(v(1) = 0 \) replaces the 2 with a zero
 - \(v(4) = 0 \) appends a zero to \(v \) now: \(v = [2 \ 4 \ 6 \ 0] \)
 - \([m,n] = \text{size}(v)\) yields \((m = 1 \ and \ n = 3) \) or \((m = 3 \ and \ n = 1) \)
 - \(v = 0:0.5:2 \) yields \(v = [0 \ 0.5 \ 1 \ 1.5 \ 2] \)

- **Matrices**
 - \(A = [1 \ 2 \ 3; \ 4 \ 5 \ 6; \ 7 \ 8 \ 9] \) or \([1,2,3;4,5,6;7,8,9] \) (semicolon seperates rows)
 - \([m,n] = \text{size}(A)\) yields \(m = \) number of rows in \(A \) and \(n = \) the number of columns in \(A \).
 - \(A(1,2) \) yields the element in row 1 and column 2 of \(A \).
 - \(A(:,2) \) yields the second column of \(A \).
 - \(A(2,:) \) yields the second row of \(A \).
 - \(A(1:2,3:4) = \) yields rows 1 to 2 and columns 3 to 4 of \(A \).
 - \(A([1 \ 3 \ 2],[1 \ 3]) = \) yields rows 1 3 2 and columns 1 3 of \(A \).
 - \(A + B \) yields term by term addition (appropriate dimensions required)
 - \(A * B \) yields normal matrix multiplication (appropriate dimensions required)
 - \(A^2 = A * A \)
 - \(A^2 \) squares each entry in \(A \).
 - \(A./2 \) divides each entry in \(A \) by 2.
 - \(\cos(A) \) takes the cosine of each term in \(A \).
 - \(\text{eye}(n) \) yields the \(n \times n \) identity matrix
 - \(\text{zeros}(n,m) \) yields an \(n \times m \) zero matrix
 - \(\text{ones}(n,m) \) yields an \(n \times m \) matrix of all ones.
 - \(\text{transpose}(A) \) yields the transpose of \(A \).
 - \(A' \) = conjugate transpose (or just transpose if real)
 - \(\text{inv}(A) \) yields the inverse of \(A \) if one exists.
 - \(\text{det}(A) \) yields the determinant of \(A \).
 - \(\text{eig}(A) \) yields a column vector of the eigenvalues of \(A \).
 - \([V,D] = \text{eig}(A) \) yields \(V \) a matrix with columns equal to \(\pm \) the normalized eigenvectors of \(A \), and \(D \) is a diagonal matrix with the eigenvalues in decreasing size from upper left.
 - \(x = A\backslash b \) produces a solution to \(Ax = b \). (forward slash).
– Matrix Factorizations

* \([L, U] = \text{lu}(A)\) returns and upper triangular matrix \(U\) and a (psychologically) lower triangular matrix \(L\) (ones on the diagonal) such that \(LU = A\). (\(L\) is actually a permutation of a lower triangular matrix).

* \([L, U, P] = \text{lu}(A)\) returns and upper triangular matrix \(U\) and lower triangular matrix \(L\) (ones on the diagonal) such that \(LU = PA\). So that to solve \(Ax = b\) use \(LUx = Pb\).

* \(R = \text{chol}(A)\) returns upper triangular \(R\) such that \(R*R' = A\). Restrictions: \(A\) must be positive definite and hermitian (symmetric if real). An error is returned if either of these restrictions is violated.

* \([V, D] = \text{eig}(A)\) yields \(V\) a matrix with columns equal to \(\pm\) the normalized eigenvectors of \(A\), and \(D\) is a diagonal matrix with the eigenvalues in decreasing size from upper left. Note: \(AV =VD\) or \(A = VDV^{-1}\).

– Vector Norms: \(V\) is a vector.

* \(\text{norm}(V, P) = \text{sum}(\text{abs}(V)^P)^{(1/P)}\).
* \(\text{norm}(V) = \text{norm}(V, 2)\).
* \(\text{norm}(V, \text{inf}) = \text{max}(\text{abs}(V))\).
* \(\text{norm}(V, \text{-inf}) = \text{min}(\text{abs}(V))\).

– Matrix Norms: \(X\) is a matrix.

* \(\text{norm}(X)\) is the largest singular value of \(X\), \(\text{max}(\text{svd}(X))\).
* \(\text{norm}(X, 2)\) is the same as \(\text{norm}(X)\).
* \(\text{norm}(X, 1)\) is the 1-norm of \(X\), the largest column sum, \(= \text{max}(\text{sum}(\text{abs}(X)))\).
* \(\text{norm}(X, \text{inf})\) is the infinity norm of \(X\), the largest row sum, \(= \text{max}(\text{sum}(\text{abs}(X')))\).
* \(\text{norm}(X,'fro')\) is the Frobenius norm, \(\sqrt{\text{sum}((X')^2)}\).
* \(\text{norm}(X,P)\) is available for matrix \(X\) only if \(P\) is 1, 2, inf or ‘fro’.

– Condition Numbers: \(X\) is a matrix.

\(\text{cond}(X,p)\) is the condition number of a matrix \(X\) using the \(p\)-norm. Values of \(p\) can be 1, 2, inf, or ‘fro’.