Bisection Method
MTHBD 423

1. Based on the Intermediate Value Theorem (continuous functions).

2. The Bisection Method of Bolzano (Interval Halving)

 - Start with an initial interval \([a, b] \) where \(f(a) \) and \(f(b) \) have opposite signs. (graph or search)
 By the Intermediate value theorem, there exists \(r \in (a, b) \) such that \(f(r) = 0. \)

 - Let \(c = \frac{b + a}{2} \)

 - If \(f(a) \) and \(f(c) \) have opposite signs: zero is in \([a, c] \).
 - If \(f(c) \) and \(f(b) \) have opposite signs: zero is in \([b, c] \).
 - If \(f(c) = 0 \), the a zero occurs at \(c \).

 In either of the first two cases, the new interval is one half the width of the original. Label this new interval \([a, b] \) and do it again.

 - first interval is \([a_0, b_0] \) and \(c_0 = (a_0 + b_0)/2 \)
 - second interval is \([a_1, b_1] \) and \(c_1 = (a_1 + b_1)/2 \)
 where \(a_1 = c_0 \) and \(b_1 = b_0 \) or \(a_1 = a_0 \) and \(b_1 = c_0 \)
 - \(n \)’th interval is \([a_n, b_n] \) and \(c_n = (a_n + b_n)/2 \)
 where \(a_n = c_{n-1} \) and \(b_n = b_{n-1} \) or \(a_n = a_{n-1} \) and \(b_n = c_{n-1} \)
 - \(\{a_n\}_{n=0}^{\infty} \) is an increasing sequence.
 - \(\{b_n\}_{n=0}^{\infty} \) is an decreasing sequence.
 - and \(a_n \leq r \leq b_n \) for all \(n \).

 - **Theorem** (Bisection Theorem) Assume \(f \in C[a, b] \) and that \(f(a) \) and \(f(b) \) are nonzero of opposite sign. Then there exists a number \(r \in (a, b) \) such that \(f(r) = 0 \) and the sequence of \(c_n \)’s generated by the bisection process satisfies

 \[
 \lim_{n \to \infty} c_n = r.
 \]

Proof

(a) Existence: Consider \(g(x) = f(x) - x \), Notice \(g(a) \cdot g(b) < 0 \), Therfore by IVT \(r \in (a, b) \) exists such that \(f(r) = 0. \)

(b) Convergence

 - \(|e_0| = |c_0 - r| \leq \frac{b_0 - a_0}{2} \)
 - \(|e_1| = |c_1 - r| \leq \frac{b_1 - a_1}{2} = \frac{b_0 - a_0}{2^2} \)
 - ... by induction
 - \(|e_n| = |c_n - r| \leq \frac{b_n - a_n}{2^n} \)

 - by the squeezing theorem on \(0 \leq |c_n - r| \leq \frac{b_0 - a_0}{2^n} \)

 - \(\lim_{n \to \infty} |c_n - r| = 0. \)

*note: This doesn’t really show that \(f(\lim c_n) = 0. \) A more complete proof is given in class.

- Number of iterations -vs- error: Suppose you want to approximate \(r \) with an error \(\leq \varepsilon \), How many iterations should you perform in terms of \(\varepsilon \) and the original interval length. Homework problem.