Power Series Method and Taylor Series Method

Consider an initial value problem of the form

\[y'' + p(x)y' + q(x)y = g(x), \quad y(x_0) = y_0, \quad y'(x_0) = y'_0 \]

• **Power Series Method:** Assume a power series solution of the form

\[y = \sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + a_3 (x - x_0)^3 + \ldots \]

Notice, \(y(x_0) = a_0 \), so \(a_0 = y_0 \), and \(y'(x_0) = a_1 \), so \(a_1 = y'_0 \), and we already have the first two terms.

Now we plug this form of the solution into the differential equation where derivatives of \(y \) are taken term by term. By equating like powers of \((x - x_0)\) we can derive a recurrence relation between \(a_n \) and previous \(a \)'s. Since we have \(a_0 \) and \(a_1 \), we work from here to find \(a_2 \), then \(a_3 \) and so on until we have the desired number of terms.

If \(p, q, \) or \(g \), are not polynomials in \((x - x_0)\) we must express them as such and this may entail expanding transcendental functions (sine, cosine, exponential, logarithmic, etc.) as a Taylor Series about \(x_0 \).

• **Taylor Series Method:** Assume a Taylor series solution of the form

\[y = \sum_{n=0}^{\infty} y^{(n)}(x_0) \frac{(x - x_0)^n}{n!} = y(x_0) + y'(x_0)(x - x_0) + y''(x_0) \frac{(x - x_0)^2}{2!} + y'''(x_0) \frac{(x - x_0)^3}{3!} + \ldots \]

where \(y^{(n)}(x_0) \) represents the \(n \)'th derivative of \(y \) evaluated at \(x_0 \).

Notice similarly that the first two terms are given by the initial conditions. To find the third term we need \(y''(x_0) \). We go back to the differential equation to find this. Rewriting the differential equation as

\[y'' = -p(x)y' - q(x)y + g(x) \]

allows us to plug in \(x = x_0 \) and find \(y''(x_0) \). Now to find \(y'''(x_0) \) we differentiate the above equation and get

\[y''' = -p'y' - py'' - q'y - qy' + g' \]

So we can plug \(x_0 \) into the right hand side to get \(y'''(x_0) \). Keep going until you have enough terms (whatever that means). Warning: This can get messy but it is possible.