Sample Exam 1

The actual exam will not be this long and WILL include some questions not represented here.

1. True-False
 (a) **T** **F** The vectors $\langle 2, -1, 3 \rangle$ and $\langle 4, -2, 6 \rangle$ are parallel.
 (b) **T** **F** The vectors $\langle 1, 2, 3 \rangle$ and $\langle 1, -5, 3 \rangle$ are orthogonal.
 (c) **T** **F** The vectors $\langle 4, 1, 2 \rangle$ and $\langle -2, 4, 7 \rangle$ have the same length.
 (d) **T** **F** The vector $\langle 1, 1, 0 \rangle$ is a unit vector.
 (e) **T** **F** The vector $\langle 2, 1, -1 \rangle$ is normal (perpendicular) to the plane $2x + y - z = 3$.
 (f) **T** **F** If $w = u \times v$, then w is orthogonal to both u and v.
 (g) **T** **F** If $w = 2u$, then $||u \times v|| = 2 ||w \times v||$.

2. If u has length 3, v has length 2, and the angle between u and v is 60°, then $u \cdot v =$
 (a) $1/2$ (b) 6 (c) 3 (d) $3/2$ (e) $3\sqrt{3}$

3. If $u = 2i + 2j$ and $v = i + j + k$, then $\text{proj}_v u$ (the projection of u onto v) is
 (a) $\frac{4}{3} u$ (b) $\frac{4}{3} v$ (c) $2 v$ (d) 2 (e) $\sqrt{2} v$

4. If $u = <3, 0, 4>$ then the unit vector in the direction of u is
 (a) $\frac{3}{5} 0, \frac{1}{5}$ (b) $\frac{5}{3} 0, \frac{5}{3}$ (c) $\frac{1}{2} 1, \frac{2}{3}$ (d) 5 (e) $\frac{3}{5} 0, \frac{4}{5}$

5. The surface whose equation in cylindrical coordinates is given by $r = 3$ is
 (a) a cone (b) a cylinder (c) a sphere (d) a plane (e) an ellipsoid

6. In cylindrical coordinates the point $(r, \theta, z) = (4, \pi/6, 3)$. This point in rectangular (cartesian) coordinates is
 (a) $(\sqrt{2}/2, \sqrt{2}/2, 3)$ (b) $(2/1, 2, 3)$ (c) $(2\sqrt{3}, 2, 3)$ (d) $(2\sqrt{3}, 2, 5)$ (e) $(2\sqrt{3}, 2, 9)$

7. The point of intersection of the line given by $\frac{x + 2}{2} = \frac{y - 1}{8} = z + 2$ and the plane $y = 9$ is
 (a) $(3, 2, 1)$ (b) $(5, 9, 7)$ (c) $(1, 9, 5)$ (d) $(0, 9, -1)$ (e) $(1, 2, 5)$

8. Let $u = \sqrt{2} j - k$, $v = \sqrt{2} i + k$ and θ be the angle between these vectors. In this case, $\cos(\theta)$ is
 (a) $-1 \frac{3}{3}$ (b) $\frac{1}{\sqrt{2}}$ (c) $\frac{-1}{\sqrt{2}}$ (d) $\frac{1}{3}$ (e) $\sqrt{2}$
9. If \(u = \langle 1, -1 \rangle \) and \(v = \langle -1, 2 \rangle \) then \(||u + v|| \) is
 (a) \(\sqrt{13} \) (b) 1 (c) \(\sqrt{5} \) (d) 3 (e) \(\sqrt{2} \)

10. A vector \(v \) has magnitude equal to 2 and makes an angle of -45° with the positive x-axis. This vector in component form is then
 (a) \(\left\langle \frac{-1}{2}, \frac{1}{2} \right\rangle \) (b) \(\langle 2, -2 \rangle \) (c) \(\langle -\sqrt{2}, \sqrt{2} \rangle \) (d) \(\langle \sqrt{2}, -\sqrt{2} \rangle \) (e) \(\left\langle \frac{1}{2}, \frac{1}{2} \right\rangle \)

11. Let \(u = \langle 1, 0, 2 \rangle \) and \(v = \langle 1, 1, 3 \rangle \). Find a unit vector that is orthogonal to both \(u \) and \(v \).

12. Let \(P(1,3,2) \), \(Q(3,1,1) \), \(R(-1,-2,3) \) be three points in \(\mathbb{R}^3 \).
 (a) Find the vector (in component form) from \(P \) to \(Q \).
 (b) Find the parametric equations for the line in space through points \(P \) and \(Q \). Parametric equations describe \(x \), \(y \), and \(z \) in terms of a parameter, usually \(t \).
 (c) Find a vector (in component form) that is orthogonal to \(\vec{PQ} \) and \(\vec{PR} \).
 (d) Find an equation for the plane determined by the points \(P,Q \), and \(R \).

13. Consider the surface defined by \(z - \frac{x^2}{4} - y^2 = 0 \).
 (a) Sketch the trace of the surface in the plane \(z = 4 \). Label the axes and clearly indicate at least two points on the trace.
 (b) Sketch the trace of the surface in the \(yz \)-plane. Label the axes and clearly indicate at least two points on the trace.
 (c) Sketch the trace of the surface in the \(xz \)-plane. Label the axes and clearly indicate at least two points on the trace.
 (d) Sketch the surface in 3-space. Label the axes.

14. Consider the vector \(u \) in the \(yz \)-plane of length 4 making an angle of 30° with the positive \(y \)-axis.
 (a) Write the vector \(u \) in standard unit vector notation (as a linear combination of \(i \), \(j \) and \(k \)).
 (b) Write the vector in component form.
 (c) Sketch the vector \(u \).

15. Consider the surface in 3-space defined by the equation \(x^2 + y^2 = 4y \).
 (a) Sketch and describe the surface in 3-space.
 (b) Convert the equation into cylindrical coordinates.

16. **Bonus** Find the point \((x_1, y_1, z_1) \) that results when the point \((x_0, y_0, z_0) \) is projected onto the plane \(ax + by + cz + d = 0 \).