1. True-False \hfill (10 pts)

(a) T F \quad \text{The vectors } \langle 2, -1, 3 \rangle \text{ and } \langle 4, -2, 1 \rangle \text{ are parallel.}

(b) T F \quad \text{The vectors } \langle 2, -1, 3 \rangle \text{ and } \langle 1, 5, 1 \rangle \text{ are orthogonal.}

(c) T F \quad \text{The vectors } \langle 8, -1, 2 \rangle \text{ and } \langle -2, 4, 7 \rangle \text{ have the same length.}

(d) T F \quad \text{The vector } \langle \frac{3}{5}, -\frac{4}{5} \rangle \text{ is a unit vector.}

(e) T F \quad \text{The vector } \langle -1, -1, 1 \rangle \text{ is perpendicular to the plane } x + y - z = 3.

2. The area of the parallelogram formed by the vectors \(\mathbf{v} = 2\mathbf{i} + \mathbf{j} \) and \(\mathbf{u} = -4\mathbf{i} + 5\mathbf{j} \) is \hfill (5 pts)

(a) 14 \quad (b) 6 \quad (c) 5 \quad (d) 3 \quad (e) 1

3. The cosine of the angle between the two vectors \(\mathbf{v} = \langle -7, 4, -4 \rangle \) and \(\mathbf{u} = \langle 4, 8, -1 \rangle \) is \hfill (5 pts)

(a) \frac{64}{49} \quad (b) 0 \quad (c) \frac{-7}{12} \quad (d) \frac{8}{63} \quad (e) \frac{8}{81}

4. The surface whose equation in cylindrical coordinates is given by \(\theta = \frac{\pi}{6} \) is \hfill (5 pts)

(a) a cone \quad (b) a cylinder \quad (c) a sphere \quad (d) a plane \quad (e) two straight lines

5. Find the point of intersection of the line given by \(\frac{x + 2}{2} = \frac{y - 7}{8} = z + 2 \) and the \(xy \)-plane. \hfill (5 pts)

[Your answer:]
6. Let \(P(2,4,6), Q(0,-1,5), R(3,1,2) \) be three points in \(\mathbb{R}^3 \).

(a) Find the vector (in component form) from \(P \) to \(Q \).

(b) Find the symmetric equations for the line in space through points \(P \) and \(Q \).

(c) Find a vector (in component form) that is orthogonal to \(\overrightarrow{PQ} \) and \(\overrightarrow{PR} \).

(d) Find an equation for the plane determined by the points \(P,Q, \) and \(R \).

(e) Find the projection of \(\overrightarrow{PQ} \) in the direction of \(\overrightarrow{PR} \).
7. Consider the surface defined by $y - \frac{x^2}{4} - z^2 = 0$. (20 pts)

(a) Sketch and describe the trace of the surface in the xy-plane.

(b) Sketch and describe the trace of the surface in the yz-plane.

(c) Sketch and describe the trace of the surface in the xz-plane.

(d) Sketch and describe the trace of the surface in the plane $y = 4$.

(e) Sketch and describe the surface in 3-space.
8. Consider the vector \mathbf{u} in the yz-plane of length 4 making an angle of 30° with the positive y-axis.

(a) Write the vector \mathbf{u} in standard unit vector notation (as a linear combination of \mathbf{i}, \mathbf{j} and \mathbf{k}).

(b) Write the vector in component form.

(c) Sketch the vector \mathbf{u}.

9. Consider the surface in 3-space defined by the equation $x^2 + y^2 = 4y$.

(a) Sketch and describe the surface in 3-space.

(b) Convert the equation into cylindrical coordinates.
10. **Bonus** Find the point \((x_1, y_1, z_1)\) that results when the point \((x_o, y_o, z_o)\) is projected onto the plane \(ax + by + cz + d = 0\).