1. Definitions

(a) The $n \times n$ matrix with ones along the diagonal and zeros elsewhere is called the **identity matrix** and is denoted I_n.

(b) If A is a matrix (a_{ij}), the **transpose** of A, denoted A^T, is defined by $a_{ij}^T = a_{ji}$.

(c) If $A^T = A$, then A is called **symmetric**.

(d) If $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then the **determinant** of A, denoted $\det(A)$ or $|A|$, is $ad - bc$.

(e) Assume A is a square, $n \times n$, matrix.

• If there exists an $n \times n$ matrix B such that $AB = BA = I_n$

 then B is called the **inverse** of A, denoted by A^{-1}, and A is called **invertible**

• The **ijth minor** of A is the $(n-1) \times (n-1)$ matrix M_{ij} resulting from A when the ith row and jth column are removed.

• The **ijth cofactor** of A is denoted A_{ij} and defined by $A_{ij} = (-1)^{i+j} |M_{ij}|$

• The **determinant** of A, denoted $\det(A)$ or $|A|$, is given by $\det(A) = a_{11}A_{11} + a_{12}A_{12} + \ldots + a_{1n}A_{1n}$.

 • A is **upper triangular** if $a_{ij} = 0$ for all $i > j$.

 • A is **lower triangular** if $a_{ij} = 0$ for all $i < j$.

 • A is **diagonal** if $a_{ij} = 0$ for all $i \neq j$.

2. Inverse Theorems. Assume A and B are both invertible matrices.

(a) $(AB)^{-1} = A^{-1}B^{-1}$

(b) $(A^T)^{-1} = (A^{-1})^T$

3. Determinant Theorems.

(a) If A is a triangular matrix (upper or lower) then $\det(A) = a_{11}a_{22} \ldots a_{nn}$

(b) $\det(A^T) = \det(A)$

(c) $\det(AB) = \det(A) \det(B)$

(d) If A is invertible then $\det(A^{-1}) = \frac{1}{\det(A)}$.

4. Let A be an $n \times n$ matrix.

The following are equivalent (TFAE)

(a) A is invertible.

(b) $\det(A) \neq 0$.

(c) $Ax = b$ has a unique solution for any b.

(d) A is row equivalent to the identity matrix.

(e) The only solution to $Ax = 0$ is the zero vector.

(f) The reduced row echelon form of A has n pivots.