Vector Spaces: 3.1

- A set is a collection of objects. Usually the objects in a set share some common features. For example the set of all m by n matrices can be given a name such as M_{mn} and described by

$$M_{mn} = \{ A : A \text{ is an } m \times n \text{ matrix} \}$$

This is stated: "The set $M_{\text{sub} m n}$ is the set of all A such that A is an m by n matrix'.

- The symbol \in means "is a member of". For example $A \in M_{22}$ is stated "A is a member of M_{22}".

- The symbol \subseteq means "is a subset of". If A and B are sets and every member of A is also a member of B then we say $A \subseteq B$.

- A real vector space V is a set of objects, called vectors together with two operations called addition and scalar multiplication that satisfy the following axioms (Numbering Scheme based on Olsavsky).

1. Addition is a binary operation on V which is both commutative and associative.
 - (a) If $x \in V$ and $y \in V$ then $x + y \in V$. closure under addition
 - (b) For all x, y, and z in V, $(x + y) + z = x + (y + z)$. associative property of addition
 - (c) If x and y are in V, then $x + y = y + x$. commutative property of addition
2. There is a vector $0 \in V$ such that $x + 0 = x$ for all $x \in V$. additive identity
3. If $x \in V$ then there is a vector $-x$ such that $x + (-x) = 0$. additive inverse
4. If $x \in V$ and α is a scalar (real number), then $\alpha x \in V$. closure under scalar multiplication
5. Scalar Multiplication Properties.
 - (a) If x and y are in V and α is a scalar, then $\alpha(x + y) = \alpha x + \alpha y$. distributive property 1
 - (b) If $x \in V$ and α and β are scalars, then $(\alpha + \beta)x = \alpha x + \beta x$. distributive property 2
 - (c) If $x \in V$ and α and β are scalars, then $\alpha(\beta x) = (\alpha \beta)x$. associative law of scalar mult.
 - (d) For every vector $x \in V$, $1 x = x$. scalar multiplicative identity

- Determine whether the following sets are vector spaces.
 1. V is the set of all 2 by 2 upper triangular matrices.
 2. V the set of all functions which are continuous on $[0, 2]$.
 3. V is the set of all polynomials of the form $p(x) = 3 + \alpha x$, where $\alpha \in \mathbb{R}$.
 4. V is the set of all polynomials of degree 2 or less.

- Classic examples of vector spaces.
 1. $\mathbb{R}^n = \text{the set of all } n\text{-vectors.}$
 2. $M_{mn} = \text{the set of all } m \times n \text{ matrices.}$
 3. $C[a, b] = \text{the set of all continuous functions on } [a, b].$
 4. $C(-\infty, \infty) = \text{the set of all continuous functions on } \mathbb{R}.$
 5. $P_n = \text{the set of all polynomials of degree } \leq n.$

- Important Theorem for Later. If V is a vector space then
 1. $0x = 0$ Proof: $0x = (0 + 0)x \Rightarrow 0 = 0x$
 2. $(-1)x = -x$ Proof: $(-1)x = (0 - 1)x \Rightarrow (-1)x = 0 - x \Rightarrow x + (-1)x = 0$