RELATIVE NEIGHBORHOODS

Ex 1: Is the interval $(0, 1)$ open?

-
-

Goal for today:

Def: Let $A \subseteq \mathbb{R}^n$ and let $x \in A$. A neighborhood of x relative to A is . . .

Examples of relative neighborhoods:

1. Suppose A is the cylinder depicted. Sketch neighborhoods of x and y relative to A.

\begin{center}
\includegraphics[width=0.3\textwidth]{cylinder.png}
\end{center}

2. Suppose $A = \{(x, 0) \in \mathbb{R}^2 : 1 \leq x < 3\}$. Sketch neighborhoods of $(2, 0)$ and $(1, 0)$ relative to A.

3. Let $A = \mathbb{R}^1 \subseteq \mathbb{R}^2$. Sketch a neighborhood of some $x \in A$ relative to A.

- Observe:
- In general,
Generalizations of the Crucial Definitions: (Memorize ASAP)

Let \(B \subseteq A \).

- A point \(x \in A \) is an **interior point** of \(B \) relative to \(A \) if . . .

- A point \(x \in A \) is an **exterior point** of \(B \) relative to \(A \) if . . .

- A point \(x \in A \) is a **limit point** of \(B \) relative to \(A \) if . . .

Def: Let \(B \subseteq A \). The set \(B \) is **open relative to** \(A \) if . . .

Note:

Thm 1: Suppose \(B \subseteq A \subseteq \mathbb{R}^n \). The set \(B \) is open relative to \(A \) if and only if . . .

(Lots more room on next page.)
Thm 2: Suppose $B \subseteq A \subseteq \mathbb{R}^n$. The set B is closed relative to A if and only if …
In-Class Exercise:
Ex 2.21. Give an example of sets $B \subseteq A \subset \mathbb{R}^3$ where B is open relative to A but not open in \mathbb{R}^3.

HW #4 Problems:
HW 2.19. Show that any set A is both open and closed relative to itself.

HW 2.22. Show that A is open relative to X if and only if $X - A$ is closed relative to X.