Recall the following definitions:

- A **neighborhood** of a point \(x \) in \(\mathbb{R}^n \) is . . .

- A set \(O \) is **open** in \(\mathbb{R}^n \) if every \(x \in O \) is an interior point of \(O \). That is, \(O \) is open in \(\mathbb{R}^n \) if for every \(x \in O \), . . .

- Let \(X \subseteq \mathbb{R}^n \) and \(Y \subseteq \mathbb{R}^m \). A function \(f : X \rightarrow Y \) is **continuous** if . . .

- Two spaces \(X \subseteq \mathbb{R}^n \) and \(Y \subseteq \mathbb{R}^m \) are **homeomorphic** if there exists a homeomorphism \(f : X \rightarrow Y \).

- Let \(X \subseteq \mathbb{R}^n \) and \(Y \subseteq \mathbb{R}^m \). A function \(f : X \rightarrow Y \) is a **homeomorphism** if . . .
Crucial Definitions:

- A **basis** β for a topology on a set X is . . .

- A **neighborhood** of a point x in a set X with basis β is . . .

- Let X be a set with a basis β. A set $O \subseteq X$ is **open** (with respect to the basis β) if . . .

- A **topology** \mathcal{T} on a set X with basis β is . . .

- A **topological space** is . . .