2.19 Show that any set A is both open and closed relative to itself.

Note: This problem would be clearer if it said, “... any set $A \subseteq \mathbb{R}^n$ is both ...”

Proof. We first show that $A \subseteq \mathbb{R}^n$ is open relative to itself. Let $x \in A$. We want to show that x is an interior point of A. Let $N = D^n(x, r) \cap A$ for some $r > 0$. Then by definition, N is an open neighborhood of x relative to A and $N \subseteq A$. Thus, x is an interior point of A relative to A. So A is open relative to itself.

We now show that A is closed relative to itself. We must show that every point in the relative complement of A is an exterior point of A relative to A. However, the relative complement of A is $A - A = \emptyset$. So every point in \emptyset satisfies any condition vacuously. Thus, A is closed relative to itself. \qed

2.22 Show that A is open relative to X if and only if $X - A$ is closed relative to X.

Proof. $X - A$ is closed relative to X if and only if every $x \in X - (X - A)$ is an exterior point of $X - A$ relative to X. By Lemma 1 from Relative Neighborhoods Lemmas Worksheet, we have that $X - (X - A) = X \cap A$. However, $A \subseteq X$. So $X - (X - A) = A$.

Thus, $X - A$ is closed relative to X if and only if every $x \in A$ is an exterior point of $X - A$ relative to X. That is, if and only if for every $x \in A$, there is a neighborhood N of x relative to X such that $N \subseteq A$. But this is the definition of an interior point of A relative to X. Hence, $X - A$ is closed relative to X if and only if every $x \in A$ is an interior point of A relative to X. In other words, $X - A$ is closed relative to X if and only if every A is open relative to X. \qed
4. Prove that if \(A_i \) is closed for all \(i \), then it is not necessarily true that \(\bigcup_{i=1}^{\infty} A_i \) is closed.

Let \(A_i = \{ x \in \mathbb{R}^n : \|x\| \leq 2 - 1/i \} \). In other words, \(A_i = \text{Cl}(D^n(0, 2 - 1/i)) \). Observe that \(A_i \subseteq A_{i+1} \subseteq D^n(0, 2) \) for all \(i \). So \(\{A_i\} \) is a sequence of larger and larger sets, but \(\lim_{i \to \infty} A_i \) (we haven’t defined this, but you probably understand what I mean.) is not unbounded. Also, \(A_i \) is closed for all \(i \). However, \(\bigcup_{i=1}^{\infty} A_i = D^n(0, 2) \), which is open.