Topology is NOT ...

Topology is LIKE ...

In Geometry we
1. study ...
 e.g.:
2. study ...
 e.g.:
3. define ...
4. study ...
 e.g.:
5. prove theorems that ...
 e.g.:
6. prove theorems about ...
 e.g.:

In Topology we
1. study ...
2. ignore ...
 e.g.:
 This means we are allowed to
 (a)
 (b)
 (c)
3. focus on . . .

e.g.:

4. define . . .

Def: Let A and B be topological spaces. Then A is **topologically equivalent** or **homeomorphic** to B if there is a function $f : A \rightarrow B$ which

1.
2.
3.

Intuitive idea of topological equivalence:

•

•

Thm: Topological equivalence is . . .

Thm: Topological equivalence preserves . . .

e.g.:

Exercise: Using your intuitive idea of topological equivalence, classify up to topological equivalence, i.e., sort by topological types the following:

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789