Math 429 Exam 1 Review

Definitions: Be prepared to define the following terms.

- neighborhood of $x \in \mathbb{R}^n$
- neighborhood of x relative to a set $X \subseteq \mathbb{R}^n$
- interior point of a set A in \mathbb{R}^n
- interior point of a set A relative to a set $X \subseteq \mathbb{R}^n$.
- exterior point of a set A in \mathbb{R}^n
- exterior point of a set A relative to a set $X \subseteq \mathbb{R}^n$.
- limit point of a set A in \mathbb{R}^n
- limit point of a set A relative to a set $X \subseteq \mathbb{R}^n$.
- isolated point of a set A in \mathbb{R}^n
- frontier point of a set A in \mathbb{R}^n
- open set A in \mathbb{R}^n
- open set A relative to a set $X \subseteq \mathbb{R}^n$.
- closed set A in \mathbb{R}^n
- closed set A relative to a set $X \subseteq \mathbb{R}^n$.
- $Int(A)$, $Fr(A)$, $Ext(A)$, and $Cl(A)$
- bounded set A in \mathbb{R}^n

Be prepared to use the following theorems:

- $Cl(A) = \{\text{limit points of } A\}$.
- $D^n(x, r)$ is open in \mathbb{R}^n.

- For any set A in \mathbb{R}^n, the set $Cl(A)$ is closed in \mathbb{R}^n.
- A set A is open in \mathbb{R}^n iff $\mathbb{R}^n - A$ is closed in \mathbb{R}^n. (You should be able to prove this too!)
- A set A is open relative to $X \subseteq \mathbb{R}^n$ iff $X - A$ is closed relative to X. (You should be able to prove this too!)
- If A and B are open (in \mathbb{R}^n or relative to $X \subseteq \mathbb{R}^n$), then $A \cup B$ and $A \cap B$ are open (in \mathbb{R}^n or relative to $X \subseteq \mathbb{R}^n$). (You should be able to prove this too!)
- If A and B are closed (in \mathbb{R}^n or relative to $X \subseteq \mathbb{R}^n$), then $A \cup B$ and $A \cap B$ are closed (in \mathbb{R}^n or relative to $X \subseteq \mathbb{R}^n$). (You should be able to prove this too!)
Problems: Be prepared to

- solve any problem like that in the homework or in-class exercises.
- classify up to topological equivalence a list of figures.
- find interiors, frontiers, and closures of some sets.
- provide an example of a set B such that $B \subseteq A \subseteq \mathbb{R}^n$ for some given set A and where B is open relative to A but not open in \mathbb{R}^n.