Axioms for a Finite Projective Plane of Order n:

Axiom 1: There exists a set of 4 distinct points, no 3 of which are collinear.
Axiom 2: There exists a line with exactly $n+1$ points on it.
Axiom 3: Every pair of distinct points has exactly one line passing through them.
Axiom 4: Every pair of distinct lines has at least one point on both of them.

1.3.7. Let ℓ be a line with exactly $n+1$ points P_1, \ldots, P_{n+1} points on it (as guaranteed by Axiom 2). Let $P = P_1$ and let Q be a point not on ℓ (as guaranteed by Axiom 1). Show that there is a line m that contains neither P nor Q.

Proof. Another way of saying that there is a line m that contains neither P nor Q is to say that there is a line m that doesn’t contain P and Q. We proceed by contradiction, carefully negating the statement we want to prove.

Suppose BWOC that every line m contains P or Q. By Axiom 1, there is a set of 4 points, no 3 of which are collinear. Thus, there must be a point distinct from Q that is not on ℓ. Otherwise, every set of 4 points would contain at least 3 (obviously collinear) points from ℓ and therefore not satisfy Axiom 1.

Now consider the lines RP_n and RP_{n+1}. By our assumption, these lines must pass through P or Q. Suppose RP_n passes through P. See Figure 1. Since $n > 1$ and ℓ has exactly $n+1$ points on it, then ℓ has a minimum of 3 points (when $n = 2$). So P_n and P_{n+1} are distinct from $P = P_1$. So RP_n contains the two distinct points $P = P_1$ and P_n. However, ℓ also contains $P = P_1$ and P_n. We know that $\ell \neq RP_n$ because ℓ doesn’t contain R. Thus, we have two distinct lines (ℓ and RP_n) that contain two distinct points ($P = P_1$ and P_n), which contradicts Axiom 3. So RP_n cannot contain P. A similar argument shows that RP_{n+1} cannot contain P either.

Thus, RP_n and RP_{n+1} both must pass through Q. See Figure 2. Since $P_n \neq P_{n+1}$, then $RP_n \neq RP_{n+1}$. Otherwise, the distinct lines $RP_n = RP_{n+1}$ and ℓ would both contain P_n and P_{n+1}, contradicting Axiom 3. Observe that RP_n and RP_{n+1} both contain R and Q. But this contradicts Axiom 3.
So it must not be true that every line contains P or Q. Hence, there is a line m that doesn’t contain P and doesn’t contain Q. That is, there is a line m that contains neither P nor Q. \qed

Axioms for a Finite Affine Plane of Order n:

Axiom 1: There exists a set of 4 distinct points, no 3 of which are collinear.

Axiom 2: There exists a line with exactly n points on it.

Axiom 3: Every pair of distinct points has exactly one line passing through them.

Axiom 4: (The Parallel Postulate) Given a line ℓ and a point P not on ℓ, there is exactly one line through P that does not intersect ℓ.

1.3.10. Show that a finite affine plane does not satisfy the principle of duality.

Either ONE of the following proofs will work.

Proof.

1. The dual of Axiom 2 says that there is a point with exactly n lines through it. However, Thm 1 from Worksheet 5 says that every point lies on exactly $n + 1$ lines. So the dual of Axiom 2 does not hold. Hence, a finite affine plane does not satisfy the principle of duality.

OR

2. The dual of Axiom 3 says that every pair of distinct lines has exactly one point of intersection. However, we may construct parallel lines (i.e., lines that do not intersect) as follows. By Axiom 2, there is a line ℓ with exactly n points on it. By Axiom 1, there is a point P, not on ℓ. By Axiom 4, there is a line ℓ' through P and not intersecting ℓ. So the dual of Axiom 3 does not hold. Hence, a finite affine plane does not satisfy the principle of duality. \qed
1.3.13. Prove that in an affine plane of order n, each line contains exactly n points.

Proof. Let ℓ be an arbitrary line in an affine plane of order n. This proof has 3 parts. We first construct a set of points on ℓ. We then show that ℓ has at least n points on it by proving the points in the set are all distinct. Finally, we show that ℓ has no more than n points on it.

We now construct a set of points on ℓ. By Axiom 2, there is a line m with exactly n points. If $m = \ell$, then we are done. So suppose $m \neq \ell$. Thus, there is a point Q on m that is not on ℓ. By Theorem 1 from Worksheet 5, Q has exactly $n + 1$ lines $\ell_1, \ldots, \ell_{n+1}$ through it. By Axiom 4, exactly one of these lines does not intersect ℓ. WOLOG, assume ℓ_{n+1} does not intersect ℓ. Thus, ℓ_1, \ldots, ℓ_n intersect ℓ at the points P_1, \ldots, P_n, respectively.

Claim 1: The points P_1, \ldots, P_n are all distinct.

Proof. Suppose BWOC that there are indices i and j with $i \neq j$ such that $P_i = P_j$. WOLOG $P_1 = P_2$. Then ℓ_1 and ℓ_2 (which are distinct lines) both pass through Q and $P_1 = P_2$, contradicting Axiom 3. Thus, $P_1 \neq P_2$. So the points P_1, \ldots, P_n are all distinct.

By Claim 1, there must be at least n points on ℓ.

Claim 2: There are no more than n points on ℓ.

Proof. Suppose BWOC that there is another point P_{n+1} on ℓ. By Axiom 3, there is a unique line q containing both Q and P_{n+1}. But as we have seen, Q has exactly $n + 1$ lines $\ell_1, \ldots, \ell_{n+1}$ through it, where ℓ_{n+1} is the unique line that does not intersect ℓ. So $q = \ell_i$, for some $i = 1, \ldots, n$. Then $q = \ell_i$ and ℓ both contain the distinct points P_i and P_{n+1}, and $\ell \neq q = \ell_i$ because ℓ does not contain Q. So Axiom 3 is contradicted. Thus, there are no more than n points on ℓ.

So ℓ must have exactly n points on it. Since ℓ was an arbitrary line in an affine plane of order n, then every line in an affine plane of order n must have exactly n points on it.