TAYLOR POLYNOMIAL APPROXIMATIONS

Def: Suppose a function f has n derivatives at x_0. Then the **Taylor polynomial of degree n** centered at x_0 which approximates f is . . .

Recall:

Note:

Ex 1: (A Classic.) Find the Taylor polynomial of degrees 0, 1, 2, and 3 centered at 0 for $f(x) = e^x$.
Ex 2: Solve the IVP \(y'' - 2y' - t^{3/2}y = 0, \quad y(0) = 5, \quad y'(0) = 10. \)
Def: The **Taylor series** for a function f centered at x_0 is . . .

Note:

Review of Power Series:
Def: A **power series** centered at x_0 is of the form . . .

Def: We say a power series centered at x_0 **converges** at $x = c$ if . . .

Def: We say a power series centered at x_0 **converges absolutely** at $x = c$ if . . .

Recall:

Thm: For a power series centered at x_0, exactly one of the following hold:

1.

2.

3.