NONHOMOGENEOUS LINEARODES WITH CONSTANT COEFFICIENTS
and the
SUPERPOSITION PRINCIPLE

Thm (The Superposition Principle): Let y_1 be a solution to $ay'' + by' + cy = f_1(t)$ and let y_2 be a solution to $ay'' + by' + cy = f_2(t)$. Then . . .

Ex 1: Find a particular solution to the ODE $y'' - 2y' - 3y = f_1(t) + f_2(t)$, where
(a) $f_1(t) = 5t + 2$ and $f_2(t) = e^{3t}$.

(b) $f_1(t) = 45t + 18$ and $f_2(t) = 7e^{3t}$.

Cor: A general solution for $ay'' + by' + cy = g(t)$. . .

Ex 2: Find a general solution to the ODE $y'' - 2y' - 3y = 5t + 2$.
Ex 3: Give the form of a particular solution to the ODE \(y'' - 2y' - 3y = g(t) \), where

(a) \(g(t) = 2t^2 e^{3t} + 7t \cos(5t) + e^t \sin t \).

(b) \(g(t) = 6e^{-t} \sin(2t) + 3t \cos(2t) + 9te^{-t} \).

Note: The Method of Undetermined Coefficients only works for

1.
2.

(a)
(b)
(c)
(d)

Undetermined Coefficients won’t work when

1.
2.
Ex 4: Find a particular solution to \(y'' + 4y = \csc t. \)

Ex 5: Suppose the third order ODE \(ay''' + by'' + cy' + dy = f(t) \) has corresponding characteristic equation
\[(r - 4)(r + 3)^2 = 0. \]
Find the form of a particular solution if

(a) \(f(t) = e^{-2t}. \)

(b) \(f(t) = e^{4t}. \)

(c) \(f(t) = e^{-3t}. \)

(d) \(f(t) = \cos 2t \)

(e) \(f(t) = e^{-3t} + e^{4t} + \cos 2t \)

Ex 6: Find the general solution to the ODE \(y'' + 9y = \cos(3t). \)

More room on next page!