TANGENT PLANES AND NORMAL LINES

Def: Let S be a smooth surface and let P be a point on S. The **tangent plane** to S at P is ...

Def: Let S be a smooth surface and let P be a point on S. The **normal line** to S at P is ...

3 Ways to Describe a Surface:

1.

2.

3.
Recall: Suppose \((x_0, y_0)\) is a point on the level curve \(f(x, y) = c\). A 2-dimensional vector that is normal to the level curve \(f(x, y) = c\) at the point \((x_0, y_0)\) is . . .

Proof:
Thm: Let F be differentiable at a point $P = (x_0, y_0, z_0)$ on a level surface S of F. If $\nabla F(x_0, y_0, z_0) \neq (0, 0, 0)$, then

Proof:
Ex 1: Let \(f(x, y) = x^3 - 3x^2y + y^2 \).

(a) Find the tangent plane to the graph of \(f \) at the point \((1, -1, 5)\).

(b) Find a set of parametric equations for the normal line to the graph of \(f \) at \((1, -1, 5)\).

Ex 2: Find the equation of the tangent plane to the surface given by \(z = x^2 + y^2 \) at the point \(P = (1, 2, 5) \).
Ex 3: Consider the surfaces given by $z = x^2 + y^2$ and $x + y + 6z = 33$. Observe that the point $P = (1, 2, 5)$ is on the curve of intersection of these surfaces.

(a) Find a set of parametric equations for the tangent line to the curve of intersection at the point P.

(b) Find the angle of intersection between the surfaces at the point P.
Ex 4: Consider the surfaces given by $x^2 + 2y^2 + 2z^2 = 20$ and $x^2 + y^2 + z = 4$.

(a) Find a set of parametric equations for the tangent line of the curve of intersection at the point $P = (0, 1, 3)$.

(b) Find the angle of intersection between the surfaces at the point P.