EXCEPTIONAL DISCRETE MAPPING CLASS GROUP ORBITS IN MODULI SPACES

JOSEPH P. PREVITE AND EUGENE Z. XIA

Abstract. Let M be a four-holed sphere and Γ the mapping class group of M fixing ∂M. The group Γ acts on the space $M_B(SU(2))$ of $SU(2)$-gauge equivalence classes of flat $SU(2)$-connections on M with fixed holonomy on ∂M. We give examples of flat $SU(2)$-connections whose holonomy groups are dense in $SU(2)$, but whose Γ-orbits are discrete in $M_B(SU(2))$. This phenomenon does not occur for surfaces with genus greater than zero.

1. Introduction

Let M be a Riemann surface of genus g with n boundary components (circles). Let

$$\{\gamma_1, \gamma_2, ..., \gamma_n\} \subset \pi_1(M)$$

be the elements in the fundamental group corresponding to these n boundary components. Assign each γ_i a conjugacy class $B_i \subset SU(2)$ and let

$$B = \{B_1, B_2, ..., B_n\},$$

$$H_B = \{\rho \in \text{Hom}(\pi_1(M), SU(2)) : \rho(\gamma_i) \in B_i, 1 \leq i \leq n\}.$$

A conjugacy class in $SU(2)$ is determined by its trace which is in $[-2, 2]$. Hence we might consider B as an element in $[-2, 2]^n$. The group $SU(2)$ acts on H_B by conjugation.

Definition 1.1. The moduli space with fixed holonomy B is

$$M_B = H_B / SU(2).$$

Denote by $[\rho]$ the image of $\rho \in H_B$ in M_B. The set of smooth points of M_B possesses a natural symplectic structure which gives rise to a finite measure μ on M_B (see [2, 3]).
Let $\text{Diff}(M, \partial M)$ be the group of diffeomorphisms of M fixing ∂M. The mapping class group Γ is $\pi_0(\text{Diff}(M, \partial M))$. The group Γ acts on $\pi_1(M)$ fixing the B_i’s. This action induces a Γ-action on \mathcal{M}_B.

Theorem 1.2 (Goldman). The mapping class group Γ acts ergodically on \mathcal{M}_B with respect to the measure μ.

Since \mathcal{M}_B has a natural topology, one may also study the topological dynamics of the mapping class group action and we have [4, 5]:

Theorem 1.3. Suppose M is an orientable surface with boundary and $g > 0$. Let $\rho \in \mathcal{H}_B$ such that $\rho(\pi_1(M))$ is dense in SU(2). Then the Γ-orbit of the conjugacy class $[\rho] \in \mathcal{M}_B$ is dense in \mathcal{M}_B.

In this paper we show:

Theorem 1.4. Let M be a four-holed sphere. Then there exists a subset $F \subset [-2, 2]^4$ of two real dimensions with the following property: Suppose $B \in F$. Then there exists $\rho \in \mathcal{H}_B$ with $\rho(\pi_1(M))$ dense in SU(2), but the Γ-orbit of the conjugacy class $[\rho]$ is discrete in \mathcal{M}_B.

Let G be a subgroup of SU(2). We say that a representation ρ is a G-representation if $\rho(\pi_1(M)) \subset G$ up to conjugation by SU(2). The group SU(2) is a double cover of SO(3):

$$p : \text{SU}(2) \longrightarrow \text{SO}(3).$$

The group SO(3) contains O(2), and the symmetry groups of the regular polyhedra: T' (the tetrahedron), C' (the cube), and D' (the dodecahedron). Let $\text{Pin}(2), T, C,$ and D denote the groups $p^{-1}(\text{O}(2)), p^{-1}(T'), p^{-1}(C'),$ and $p^{-1}(D')$, respectively. The proper closed subgroups of SU(2) consist of $T, C, D,$ and the closed subgroups of $\text{Pin}(2)$. The group $\text{Pin}(2)$ has two components, and we write

$$\text{Pin}(2) = \text{Spin}(2) \cup \text{Spin}_-(2),$$

where Spin(2) is the identity component of Pin(2).

Remark 1.5. Suppose $\rho \in \text{Hom}(\pi_1(M), \text{SU}(2))$. If $\rho(\pi_1(M))$ is not contained in any of the aforementioned closed subgroups, then it is dense in SU(2).

We adopt the following notational conventions: For a fixed representation ρ, $X \in \pi_1(M)$, we write X for $\rho(X)$ when there is no ambiguity. A small letter denotes the trace of the matrix represented by the corresponding capital letter.
2. The moduli space of the four-holed sphere

We first review some results that appear in [1, 2, 5]. Suppose M is a three-holed sphere. Then $\pi_1(M)$ has a presentation:

$$\langle A, B, C : ABC = I \rangle,$$

where A, B, and C represent the homotopy classes of the three boundaries of M.

Proposition 2.1.

1. A representation ρ on a three-holed sphere is a Spin(2)-representation if and only if $a^2 + b^2 + c^2 - abc - 4 = 0$.
2. A representation ρ on a three-holed sphere is a Pin(2)-representation and not a Spin(2)-representation if and only if $a^2 + b^2 + c^2 - abc - 4 \neq 0$ and at least two of the three: A, B, AB, have zero trace.

Proof. See [2, 5].

Suppose M is a four-holed sphere. Then the fundamental group $\pi_1(M)$ admits a presentation

$$\langle A, B, C, D : ABCD = I \rangle.$$

Set $X = AB, Y = BC, Z = CA$. Let $\kappa = (a, b, c, d) \in [-2, 2]^4$ be the holonomies on the boundary. Then the moduli space M_κ is the subspace of $[-2, 2]^3$ given by the equation [2, 5]

$$x^2 + y^2 + z^2 + xyz = (ab + cd)x + (ad + bc)y + (ac + bd)z - (a^2 + b^2 + c^2 + d^2 + abcd - 4).$$

Remark 2.2. [2] If two representations in M_κ share (x, y, z), then they are conjugate.

Let

$$I_{a,b} = \left[\frac{ab - \sqrt{(a^2 - 4)(b^2 - 4)}}{2}, \frac{ab + \sqrt{(a^2 - 4)(b^2 - 4)}}{2} \right].$$

If $I_{a,b} \cap I_{c,d} \neq \emptyset$, then M_κ is a (possibly degenerate) topological sphere (see Figure 1).

The mapping class group Γ of the 4-holed sphere is generated by three Dehn twists τ_X, τ_Y, τ_Z [2, 5]. In local coordinates, the actions are

$$\begin{bmatrix} y \\ z \end{bmatrix} \xrightarrow{\tau_X} \begin{bmatrix} ad + bc - x(ac + bd - xy - z) - y \\ ac + bd - xy - z \end{bmatrix},$$

$$\begin{bmatrix} z \\ x \end{bmatrix} \xrightarrow{\tau_Y} \begin{bmatrix} bd + ca - y(ba + cd - yz - x) - z \\ ba + cd - yz - x \end{bmatrix},$$

$$\begin{bmatrix} x \\ y \end{bmatrix} \xrightarrow{\tau_Z} \begin{bmatrix} cd + ab - z(cb + ad - zx - y) - x \\ cb + ad - zx - y \end{bmatrix}.$$
Consider

$$e^{i\theta} = \left(\begin{array}{cc} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{array} \right), \quad \iota = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$

in Pin(2).

Proposition 3.1. Suppose $\rho \in \mathcal{H}_{(a,b,c,d)}$ with $a, b, c, d \notin \{\pm 2\}$ and $[\rho] = (x, y, z) \in \mathcal{M}_\kappa$. Then the representation ρ is a Spin(2)-representation
if and only if x is an endpoint of both $I_{a,b}$ and $I_{c,d}$, y is an endpoint of both $I_{b,c}$ and $I_{a,d}$, and z is an endpoint of both $I_{a,c}$ and $I_{b,d}$.

Proof. First, suppose that ρ is a Spin(2)-representation. Then, up to conjugation,

$$
\rho(A) = e^{i\theta_a}, \rho(B) = e^{i\theta_b}, \rho(C) = e^{i\theta_c}, \rho(D) = e^{i\theta_d},
$$

where $\theta_a + \theta_b + \theta_c + \theta_d = 0$. The endpoints of $I_{a,b}$ are given by

$$
\frac{1}{2}(ab \pm \sqrt{(4-a^2)(4-b^2)})
= \frac{1}{2} \cos(\theta_a + \theta_b) \pm \frac{1}{2} \sqrt{(4 - 4 \cos^2(\theta_a))(4 - 4 \cos^2(\theta_b))}
= \frac{1}{2} \cos(\theta_a + \theta_b) \pm |2 \sin(\theta_a) \sin(\theta_b)|
= \cos(\theta_a + \theta_b) \pm \cos(\theta_a - \theta_b) \pm |\cos(\theta_a - \theta_b) - \cos(\theta_a + \theta_b)|.
$$

This implies that an endpoint of $I_{a,b}$ is equal to $2 \cos(\theta_a + \theta_b)$. Similarly, an endpoint of $I_{c,d}$ is equal to $2 \cos(\theta_c + \theta_d)$ which is equal to $2 \cos(\theta_a + \theta_b) = x$. Thus x is equal to an endpoint of both $I_{a,b}$ and $I_{c,d}$. A similar argument shows that y must be an endpoint of $I_{b,c}$ and $I_{a,d}$, and also z must be an endpoint of $I_{a,c}$ and $I_{b,d}$.

To prove the converse, suppose that ρ is such that x is an endpoint of both $I_{a,b}$ and $I_{c,d}$, y is an endpoint of both $I_{b,c}$ and $I_{a,d}$, and z is an endpoint of both $I_{a,c}$ and $I_{b,d}$. Then $2x = ab \pm \sqrt{(4-a^2)(4-b^2)}$ which implies that

$$
4x^2 = a^2b^2 + 16 - 4a^2 - 4b^2 + a^2b^2 \pm 2ab \sqrt{(4-a^2)(4-b^2)}
= a^2b^2 + 16 - 4a^2 - 4b^2 + a^2b^2 \pm 2ab(2x - ab).
$$

Hence

$$
x^2 + a^2 + b^2 - xab = 4
$$

which implies that ρ is a Spin(2)-representation on the three-holed sphere (A,B,X) by Proposition 2.1. Similarly, (C,D,X), (A,C,Z), (B,D,Z), (A,D,Y), and (B,C,Y) are all Spin(2)-representations. As $A,B,C,$ and D all pairwise commute, we have that ρ is a Spin(2)-representation on the entire four-holed sphere. \hfill \square

Proposition 3.2. Let $\rho \in \mathcal{H}_\kappa$ and $[\rho] = (x,y,z) \in \mathcal{M}_\kappa$. Suppose ρ is a Pin(2)-representation but not a Spin(2)-representation then one of the following two conditions holds:

1. $\kappa = (0,0,0,0)$,
2. $\kappa = (0,0,c,d)$, where $y = 0$ and $z = 0$, along with the five other symmetric cases.

If ρ satisfies one of the two conditions above, then ρ is a Pin(2)-representation.
Proof. Let \(\rho \) be a Pin(2)-representation but not a Spin(2)-representation. Then at least one of \(A, B, C, \) or \(D \) must be in Spin\((2) \). However, since \(ABCD = I \), at least two of \(A, B, C, \) or \(D \) must be in Spin\((2) \). Suppose \(A, B \in \text{Spin}(2) \). If \(C \in \text{Spin}(2) \), then \(D \in \text{Spin}(2) \), then we obtain \(\kappa = (0, 0, 0, 0) \). If \(C \in \text{Spin}(2) \), then \(D \in \text{Spin}(2) \), which implies that \(AC, BC \in \text{Spin}(2) \), i.e., \(y = z = 0 \).

Now consider

\[
A = \iota, B = -\iota e^{i\theta}
\]

which are contained in a Pin(2) subgroup.

Case 1: Let \(\rho \in \mathcal{H}_\kappa \) with \(\kappa = (0, 0, 0, 0) \) with \(x, y, z \) satisfying the equation \(x^2 + y^2 + z^2 + xyz = 4 \). We construct a Pin(2)-representation conjugate to \(\rho \) by setting \(x = 2 \cos \theta \) (in \(A \) and \(B \) above) and setting \(C \) equal to one of \(e^{+i\psi} \iota \), where \(z = -2 \cos \psi \). As \(CA = -e^{\pm i\psi} \) and \(Y = BC \) is either \(e^{i(\theta + \psi)} \) or \(e^{i(\theta - \psi)} \) whose traces are the two solutions of \(x^2 + y^2 + z^2 + xyz = 4 \) for fixed \(x \) and \(z \). Therefore, this Pin(2)-representation is conjugate to \(\rho \).

Case 2: Let \(\rho \in \mathcal{H}_\kappa \) with \(\kappa = (0, 0, c, d) \) with \(y = z = 0 \). Thus \(x, c, d \) satisfy:

\[
x^2 = cdx - c^2 - d^2 + 4 \implies \text{rho restricted to } (X, C, D) \text{ is a Spin(2)-representation by Proposition 2.1.}
\]

We construct a Pin(2)-representation conjugate to \(\rho \) by setting \(x = 2 \cos \theta \) (in \(A \) and \(B \) above) and setting \(C \) to be \(e^{i\psi} \) and \(D = e^{-i(\psi+\theta)} \). As the traces of \(Y = BC \) and \(Z = AC \) are zero, this Pin(2)-representation is conjugate to \(\rho \). \(\Box \)

Propositions 3.1 and 3.2 provide a complete characterization of the Pin(2)-representation classes.

4. Examples

A direct computation shows that the traces of elements in the groups \(C, D \) are in the set \(S = \{0, \pm 1, \pm \sqrt{2}, \pm \frac{\sqrt{5} + 1}{2}, \pm \frac{\sqrt{5} - 1}{2}, \pm 2\} \).

Let \(F \) be the set of \(\kappa = (a, a, c, -c) \in [-2, 2]^4 \) satisfying the following conditions:

1. \(a^2 + c^2 < 4 \),
2. \(a \neq 0 \) and \(c \neq 0 \),
3. \(a \not\in S \) or \(c \not\in S \).

Consider the space \(\mathcal{M}_\kappa \) with \(\kappa \in F \). A direct computation shows

\[
O = \{(a^2 - 2, 0, 0), (2 - c^2, 0, 0)\} \subset \mathcal{M}_\kappa
\]

is \(\Gamma \)-invariant. By condition 1,

\[
I_{a,a} \cap I_{c,-c} = [a^2 - 2, 2] \cap [-2, 2 - c^2] = [a^2 - 2, 2 - c^2]
\]
is a closed interval. Again by condition 1, \(a, c \neq \pm 2 \). Hence Proposition 3.1 implies that elements in \(\mathcal{O} \) do not correspond to Spin(2)-representations. By condition 2, \(a, c \neq 0 \), so the elements in \(\mathcal{O} \) do not correspond to Pin(2)-representations by Proposition 3.2. Finally, by condition 3, they do not correspond to \(\mathcal{C}, \mathcal{D} \)-representations. Thus, by Remark 1.5, the elements in the discrete orbit \(\mathcal{O} \) correspond to representations with dense images in SU(2). This proves Theorem 1.4.

Figure 1 shows one such case with \(\kappa = (\sqrt{2}, \sqrt{2}, \frac{1}{2}, -\frac{1}{2}) \). The special orbit \(\mathcal{O} \) consists of the two points that are intersections of the \(x \)-axis with \(\mathcal{M}_\kappa \), i.e. \(\mathcal{O} = \{ (0, 0, 0), (\frac{7}{4}, 0, 0) \} \). Below is a representation in the conjugacy class \((0, 0, 0) \in \mathcal{O} \subset \mathcal{M}_\kappa \):

\[
A = B = \begin{bmatrix}
\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i & 0 \\
0 & \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i
\end{bmatrix} \quad \text{and} \quad C = -D = \begin{bmatrix}
\frac{1}{4} + \frac{i}{4} & \frac{\sqrt{14}}{4} \\
-\frac{\sqrt{14}}{4} & \frac{1}{4} - \frac{i}{4}
\end{bmatrix}.
\]

References

School of Science, Penn State Erie, The Behrend College, Erie, PA 16563

National Center for Theoretical Sciences Third General Building, National Tsing Hua University No. 101, Sec 2, Kuang Fu Road, Hsinchu, Taiwan 30043, Taiwan R.O.C.

E-mail address: jpp@vortex.bd.psu.edu (Previte), xia@math.umass.edu (Xia)