§4 and §8 Hints

• Here are some common guidelines for proofs that involve sup \(A \)
 (a) Suppose you are trying to prove
 \[
 \sup A \leq x,
 \]
 where \(x \) is some number.
 One strategy is to show that \(x \) is an upper bound of \(A \).
 (Then the result follows since \(\sup A \) is the least upper bound of \(A \).)
 To do this: Let \(a \in A \) be any element of \(A \) and show that \(x \geq a \).

 (b) Similarly, when trying to prove \(\inf A \geq x \), where \(x \) is some number.
 One strategy is to show that \(x \) is a lower bound of \(A \).
 (Then the result follows since \(\inf A \) is the greatest lower bound of \(A \).)
 To do this: Let \(a \in A \) be any element of \(A \) and show that \(x \leq a \).

 (c) If you ever know that \(\sup A > y \) for some number \(y \),
 then sometimes it is helpful to remember that there must exist an \(a \in A \) so that
 \(\sup A \geq a > y \).

• Here are some tricks that may come up in \(\epsilon/N \) proofs.
 (a) When trying to solve
 \[
 |a_n - L| < \epsilon \text{ for } n > junk(\epsilon)...
 \]
 You can use an intermediate term in between \(|a_n - L| \) and \(\epsilon \) that can be solved directly for \(n \).
 (Note: This term should have some form of \(n \) in the denominator, not the numerator!)
 e.g.
 \[
 \frac{1}{n} e^{-n} \leq \frac{1}{n}
 \]
 since \(e^{-n} < 1 \) for \(n \geq 1 \).

 e.g.
 \[
 \frac{1}{n^2 + 2n + 11} < \frac{1}{n^2}
 \]
 (Since \(n^2 < n^2 + 2n + 11 \))

 e.g.
 \[
 \frac{1}{n^2 - 2n + 11} = \frac{1}{(n - 1)^2 + 10}
 \]
By insisting that \(n > 11 \) we may write
\[
\frac{1}{n^2 - 11} < \frac{1}{n^2 - n} = \frac{1}{n(n - 1)} \leq \frac{1}{n}
\]

additionally, we could have done:
By insisting that \(\frac{n^2}{2} > 11 \) we may write
\[
\frac{1}{n^2 - 11} < \frac{1}{n^2 - \frac{n^2}{2}} \leq \frac{1}{\frac{n^2}{2}} = \frac{2}{n^2}
\]

(we can insist that \(n \) be big enough so that \(2n < \frac{n^2}{4} \) and \(100 < \frac{n^2}{4} \)
then
\[
\frac{1}{n^2 - 2n - 100} < \frac{1}{n^2 - \frac{n^2}{4} - \frac{n^2}{4}} \leq \frac{1}{\frac{n^2}{2}} = \frac{2}{n^2}
\]

HW:

(1) Let \(S \) be a nonempty bounded subset of \(\mathbb{R} \)
Let \(T = \{2s : s \in S\} \) (essentially, \(T \) is obtained by doubling the elements of \(S \))
Prove that \(\sup T = 2 \sup S \).

(2) Use the \(\epsilon/\ N \) definition to prove that
\[
a_n = \frac{n^2}{n^2 - 4n - 11}
\]
converges

(3) Assume that \(a_n \) converges to \(L \).
(a) Prove that \(|a_n| \) converges to \(|L| \).
(b) Is the converse true? Prove or give a counterexample.