2.2. FIRST ORDER LINEAR ODE

2.2.1 Solving First Order Linear ODE

A differential equation is called a *linear* first order ODE if it can be rewritten into the form:

\[a_1(x) \frac{dy}{dx} + a_0(x)y = g(x). \] \hspace{1cm} (2.2)

Here \(a_1(x) \), \(a_0(x) \) and \(g(x) \) are functions of \(x \). So long as \(a_1(x) \neq 0 \), by dividing, we can write any first order linear differential equation in *standard form*, shown below.

<table>
<thead>
<tr>
<th>Standard Form of a First Order Linear ODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A first order linear ODE is said to be in standard form if it is in the form</td>
</tr>
<tr>
<td>[\frac{dy}{dx} + P(x)y = Q(x)]</td>
</tr>
<tr>
<td>(2.3)</td>
</tr>
<tr>
<td>for functions (P(x)) and (Q(x)).</td>
</tr>
</tbody>
</table>

Any first order linear has a solution given below:

<table>
<thead>
<tr>
<th>Solving a First Order Linear ODE in Standard Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consider the differential equation</td>
</tr>
<tr>
<td>[\frac{dy}{dx} + P(x)y = Q(x).]</td>
</tr>
<tr>
<td>If (P(x)) has antiderivative (\int P)</td>
</tr>
<tr>
<td>[y = \frac{\int Q(x)e^{\int P} , dx + C}{e^{\int P}}.]</td>
</tr>
<tr>
<td>(Here, (C) is the constant of integration of the outer integral in the numerator).</td>
</tr>
</tbody>
</table>

Proof: Use the quotient rule to differentiate

\[y = \frac{\int Q(x)e^{\int P} \, dx + C}{e^{\int P}}. \]
with respect to x and the fact that $\frac{d}{dx} \int P = P(x)$ obtain

$$\frac{dy}{dx} = \frac{(Q(x)e^{\int P})e^{\int P} + (\int Q(x)e^{\int P} dx + C)e^{\int P}P(x)}{(e^{\int P})^2}$$

The right hand side simplifies to

$$= Q(x) - P(x)\left(\frac{\int Q(x)e^{\int P} dx + C}{e^{\int P}}\right) = Q(x) - P(x)y \qed$$

Example 2.4 Solve the DE

$$\frac{dz}{dx} = 2z + x; \ x > 0$$

Solution: We first write the DE in standard form:

$$\frac{dz}{dx} - \frac{2}{x}z = x.$$

We then identify $P(x) = -\frac{2}{x}$ and $Q(x) = x$. Next, compute $\int P = -2\ln x$ (note that only one antiderivative is required and since $x > 0$, we do not write $\ln |x|$).

Next we compute $e^{\int P}$:

$$e^{\int P} = e^{-2\ln x} = e^{\ln x^{-2}} = \frac{1}{x^2}.$$

Substituting into the formula:

$$y = \frac{\int Q(x)e^{\int P} dx + C}{e^{\int P}},$$

we obtain

$$y = \frac{\int x \cdot \frac{1}{x^2} dx + C}{\frac{1}{x^2}}$$

and finally get

$$y = \frac{\ln x + C}{\frac{1}{x^2}} = x^2 \ln x + Cx^2. \qed$$

For a first order linear differential equation in standard form, the expression $e^{\int P}$ is called the integrating factor. Instead of simply memorizing the
above formula, an alternate way to solve equations of the form (2.2.1) is to multiply equation (2.2.1) by the integrating factor $\exp \int P$ and then realizing that the resulting left-hand side is equal to $\frac{d}{dx} (y \cdot \exp \int P)$ by the product rule.

Example 2.5 Solve the DE

$$\frac{dy}{dx} = x - 3y$$

using the alternate method described above.

Solution: We first write the DE in standard form:

$$\frac{dy}{dx} + 3y = x.$$

We then identify $P(x) = 3$ and $Q(x) = x$. Multiplying both sides of the differential equation by the integrating factor $e^{\int P} = e^{3x}$ we obtain:

$$e^{3x} \frac{dy}{dx} + 3e^{3x} y = xe^{3x}.$$

Note that by the product rule (and chain rule), the left-hand side of the above expression is simply $\frac{d}{dx} (e^{3x} y)$

Rewriting, we obtain

$$\frac{d}{dx} (e^{3x} y) = xe^{3x}.$$

We integrate both sides with respect to x and obtain

$$e^{3x} y = \int xe^{3x} \, dx$$

The right-hand side (after integration by Parts) simplifies to

$$\frac{1}{3} xe^{3x} - \frac{1}{3} e^{3x} + C$$

Hence,

$$e^{3x} y = \frac{1}{3} xe^{3x} - \frac{1}{3} e^{3x} + C$$
and solving for y, we obtain

$$y = \frac{1}{3}x - \frac{1}{3} + Ce^{-3x}$$

Exercises

Solve the following DE:

1. \(\frac{dy}{dx} - \frac{1}{x}y = x^3; \quad x > 0 \)
2. \(\frac{dy}{dx} - y = e^{2x} \)
3. \(\frac{dz}{dt} = t + z \)
4. \(x \frac{dy}{dx} = (\sin x - y) \, dx \)
5. \(\frac{dz}{dt} = \cos t - z \cot t; \quad 0 < t < \frac{\pi}{2} \)
6. \(\frac{dy}{dx} = \frac{y}{2y - x} \) (Hint: solve for x in terms of y)

Solve the following initial Value Problems

7. \(\frac{dy}{dx} + \frac{3}{x}y = 1; \quad y(1) = 2 \)
8. \(\frac{dy}{dx} + y = 2; \quad y(0) = -1 \)
9. \(\frac{dz}{dx} + 2xz = x; \quad y(1) = 2 \)