The Area of a Region Bounded by Two Graphs

Def: If f and g are continuous on $[a, b]$ and $g(x) \leq f(x)$ for all x in the interval, then the area of the region bounded by the graphs of f, g, $x = a$, and $x = b$ is given by . . .

Ex 1: Find the area of the region bounded by the graphs of $y = -x^2 + 2x + 1$ and $y = 2x^2 - 4x + 6$ for $1 \leq x \leq 2$.
Warning!!

Ex 2: Find the area of the region bounded by the graphs of \(y = 3x - x^2 \) and
\(y = 2x^3 - x^2 - 5x \) for \(-2 \leq x \leq 2\).
Ex 3: Set up definite integral(s) that compute the area of the regions below:

(a) Between the graphs of \(y = x^2 \) and \(y = (x-2)^2 \) for \(0 \leq x \leq 3 \). **Do not evaluate the integral.**

WHO IS ON TOP WHEN?! In order to algebraically determine where one function switches from top to bottom, solve \(f(x) = g(x) \) for \(x \). (Your calculator can also help).

(b) The area of the region between the graphs of \(y = x^2 + 2x + 3 \) and \(y = 2x + 4 \).

(c) The area of the region between the graphs of \(y = 2x^3 \) and \(y = x^3 + 3x \).
SWITCHING ROLES OF THE VARIABLES

Def: If $x = g(y)$ and $x = h(y)$ are continuous on $[c, d]$ and $g(y) \leq h(y)$ for all y in the interval, then the area of the region bounded by the graphs of g, h, $y = c$, and $y = d$ is given by . . .

Ex 4: Set up a definite integral in the variable y that computes the area of the region bounded by $y = x$, $y = (x - 2)^2$, and $y = 0$ as pictured below:

Set up a definite integral(s) in the variable x that computes the area of the same region.
MATH 141 HW QUIZ 1

Directions: Show ALL work for full credit. Please use the back if you need more room.

1. [5pts] Do 7.1 # 18

2. [5pts] Do 7.1 # 30